US009058428B1

a2 United States Patent 10) Patent No.: US 9,058,428 B1
Siddiqui et al. (45) Date of Patent: Jun. 16, 2015
(54) SOFTWARE TESTING USING SHADOW 8,762,959 B2* 6/2014 Singonahallietal. 717/131
REQUESTS 2004/0168153 Al 82004 Marvin
2004/0172618 Al 9/2004 Marvin
Qs A et . 2004/0261070 Al 12/2004 Miller et al.
(75) Inventors: Muhammad Ali Siddiqui, Snoqualmie, 2006/0143595 Al* 6/2006 Dostert et al. oovvrvvvinn.. 717/127
WA (US); Peter V. Commons, Issaquah, 2007/0094651 Al 4/2007 Stephens et al.
WA (US); Ivan Eduardo Gonzalez, 2007/0240108 Al 10/2007 Dorn et al.
Seattle, WA (US); Amos Dylan Vance, 2007/0250631 A1* 10/2007 Balietal. ..cccoooorrrrvooon 709/226
Redmond, WA (US); Kendra A. 2008/0263538 Al . 10/2008 Bando et al.
Yourtee, Seattle, WA (US); Thomas L. 2008/0270997 Al* 10/2008 .Murray etal. ..o 717/131
Keller, Renton, WA (US) (Continued)
. . OTHER PUBLICATIONS
(73) Assignee: Amazon Technologies, Inc., Seattle, WA
(as) Choi, E. Performance test and analysis for an adaptive load balancing
))))) mechanism on distributed server cluster systems. Future Generation
(*) Notice: SUbJeCt. to any dlSCIalmer{ the term of this Computer Systems, Feb. 2004, pp. 237-247. Retrieved on [Jan. 29,
patent is extended or adjusted under 35 2015] Retrieved from the Internet: URL<http://www.sciencedirect.
U.S.C. 154(b) by 280 days. com/science/article/pii/S0167739X0300 [380#> *
(21) Appl. No.: 13/445,562 (Continued)
(22) Filed: Apr. 12,2012 Primary Examiner — Thuy Dao
Assistant Examiner — Cheneca Smith
nt. CL ttorney, Agent, or Firm — Lee ayes,
(51) Int.Cl 74) Attorney, Ag Fi Lee & Hayes, PLLC
GO6F 9/44 (2006.01)
GO6F 11/36 (2006.01) (57) ABSTRACT
(52) US.CL The techniques described herein provide software testing that
C.PC e GO6F 11/3688 (2013.01) may concurrently process a user request using a live version
(58) Field of Classification Search of software and a shadow request, which is based on the user
None o) request, using a shadow version of software (e.g., trial or test
See application file for complete search history. version, etc.). The live version of software, unlike the shadow
. version, is user-facing and transmits data back to the users
(56) References Cited while the shadow request does not output to the users. An

U.S. PATENT DOCUMENTS

6,732,139 Bl 5/2004 Dillenberger et al.

7,076,767 B1* 7/2006 Williams 717/127
7,155,462 Bl 12/2006 Singh et al.

7,383,541 Bl 6/2008 Banks et al.

7490,319 B2* 2/2009 Blackwelletal. 717/124
7,779,392 B2* 8/2010 Sashino etal. 717/127
8,001,422 B1* 82011 Sunetal. 714725
8,499,286 B2* 7/2013 Lawranceetal. 717/124

allocation module may vary allocation of the shadow requests
to enable a ramp up of allocations (or possibly ramp down) of
the shadow version of software. The allocation module may
use allocation rules to dynamically initiate the shadow
request based on various factors such as load balancing, user
attributes, and/or other rules or logic. Thus, not all user
requests may be issued as shadow requests.

20 Claims, 8 Drawing Sheets

400
Pa

402 -
DETERMINE ALLOCATION RULES]

:

204 —_[
RECENE REQUEST FROM USER

LIVE VERSION
CF SOFTWARE

208 -,

SHADOW
VERSION OF
SCFTWARE

PROCESS LIVE REQUEST]

410 - l

US 9,058,428 B1
Page 2

(56)

2008/0282230
2009/0106256
2009/0125891
2009/0199160
2009/0210866
2009/0248699
2009/0293061
2010/0318986
2011/0035740
2011/0083129
2011/0289512
2012/0084407
2012/0324435
2013/0036402
2013/0124610

References Cited

U.S. PATENT DOCUMENTS

Al
Al*
Al*
Al*
Al
Al
Al
Al
Al
Al
Al
Al*
Al
Al
Al*

11/2008
4/2009
5/2009
8/2009
8/2009

10/2009

11/2009

12/2010
2/2011
4/2011

11/2011
4/2012

12/2012
2/2013
5/2013

Belvin et al.

Safarietal.ocooverns 707/10
Garimella et al. . 717/131
Vaitheeswaran et al. 717/124
Troan

Alvarez et al.

Schwinn et al.

Burke et al.

Powell et al.

Masaki

Vecera et al.

Soulios et al. 709/220
Somani et al.

Mutisya et al.

Smith etal. ... 709/203

OTHER PUBLICATIONS

Jiang et al. Automated Performance Analysis of Load Tests, IEEE
International Conference on Software Maintenance, Sep. 2009, pp.
125-134, Retrieved on [Jan. 29, 2015] Retrieved from the Internet:
URL<http://iceexplore.icee.org/xpls/abs_ all.jsp?arnumber=
530633 1&tag=1>*

Office Action for U.S. Appl. No. 13/445,482, mailed on Jan. 16,2014,
Muhammad Ali Siddiqui, “Software Testing Analysis and Control”,
17 pages.

Office Action for U.S. Appl. No. 13/445,482, mailed on Oct. 31,
2014, Muhammad All Siddiqui, “Software Testing Analysis and Con-
trol”, 17 pages.

Office action for U.S. Appl. No. 13/445,482, mailed on Jul. 24,2014,
Siddiqui et al., “Software Testing Analysis and Control”, 22 pages.

* cited by examiner

U.S. Patent Jun. 16, 2015 Sheet 1 of 8 US 9,058,428 B1

100
/‘

;-'104

L

LIVE VERSION | SHADOW
108 VERSION 110
~ | RULES /
CONTROLLER || 114
116

ALLOCATION
MODULE 112

METRICS
ANALYZER 118

(L w102

Y

REPORTING
MODULE 120

FIG. 1

US 9,058,428 B1

Sheet 2 of 8

Jun. 16, 2015

U.S. Patent

¢

Old

{NJOLL NOISHIA
MOOYHS

LHOd43Y
AANVNLHO A3

(17017 NoIsYaA
MOOYHS

BR=16%: = 0a !
AONVYNIO S 3d

T

vroS\ A

O NOISHIA IAN

LHOd43Y
AONVNHO I 3d

80¢ L»
002 A

V/\ 1414

202 MuOMINY S

~ 907

U.S. Patent Jun. 16, 2015 Sheet 3 of 8 US 9,058,428 B1

300
/—'
[SERVICE 1086
PROCESSOR(S) 302
COMPUTER-READABLE MEDIA 304
ALLOCATION MODULE 112 CONTROLLER 118
LOAD BALANCER 308 INPUTS MODULE 316
RULES) -
IMPLEMENTATION RULES UPDATER 318
MODULE 308 4
. RESOURCE
ALLOCATOR 320
METRICS ANALYZER 118 &
SAW“N%?ANAGER REPORTING MODULE 120 |
—_— PERFORMANCE |
STATISTICAL REPORT
ANALYZER 312 GENERATOR 322
pERFORN’EANCE iNPU}' MODULE :\3‘2—4
ANALYZER 314 \

FIG. 3

U.S. Patent Jun. 16, 2015 Sheet 4 of 8 US 9,058,428 B1

400
/~
402
DETERMINE ALLOCATION RULES
404
RECEIVE REQUEST FROM USER
406 i
SHADOW YES
REQUEST?
LIVE VERSION SHADOW
OF SOFTWARE VERSION OF
SOFTWARE
408 ~ 'y ' 414
e PROCESS SHADOW
{ PROCESS LIVE REQUEST l e hen
410 l \ /- 418
MEASURE SYSTEM
pROV}DEg&Q PUTTO PERFORMANCE OF
SHADOW VERSION
.,
412~ '
MEASURE SYSTEM
PERFORMANCE OF LIVE
VERSION

FIG. 4

U.S. Patent Jun. 16, 2015 Sheet 5 of 8 US 9,058,428 B1

500
/——

502 N
ASSIGN SOFTWARE VERSION

Y

504 ~
MARK REQUEST AS SHADOW REQUEST

Y

506 ~| EXECUTE SOFTWARE VERSION AS
SHADOW REQUEST

Y

508 N
MEASURE SYSTEM PERFORMANCE

Y

510
N REPORT MEASURED DATA

FIG. 5A

U.S. Patent Jun. 16, 2015 Sheet 6 of 8 US 9,058,428 B1

502 —\
ASSIGN SOFTWARE VERSION

A

504 N
MARK REQUEST AS SHADOW REQUEST

Y

506 ~| EXECUTE SOFTWARE VERSION AS
SHADOW REQUEST

Y

508 BN
MEASURE SYSTEM PERFORMANCE

Y

514 N\ MODIFY ALLOCATION RULES BASED ON
MEASURED DATA

N TN fsw_

¢ .

516 ™
MODIFY RESOURCE ALLOCATION

v -

510
N\ REPORT MEASURED DATA

FIG. 5B

U.S. Patent

Jun. 16, 2015 Sheet 7 of 8

602
\{ RUN SHADOW INITIAL LEVEL J

864
N

P

606 —

US 9,058,428 B1

600
/—'

-

Y

COMPILE METRICS FOR LIVE

VERSION AND/OR SHADOW
VERSION

[610

.

ANALYZE RESULTS

MODIFY ALLOCATION OF
SHADOW REQUESTS

:

608 —
NO INCREASE

ADJUST

3

ALLOCATION?
DECREASE

612
—b/
END TEST?

YES

514
\{ END TEST]

FIG. 6

U.S. Patent Jun. 16, 2015 Sheet 8 of 8 US 9,058,428 B1

700
/_

702

RECEIVE NG
INPUTS FROM

ADMINISTRATOR?

704
‘\

UPDATE RULES

706

YES

UPDATE RULES
BASED ON DATA FROM
ANALYSIS MODULE?

UPDATE RESQURCE
ALLOCATION?

710
,\

UPDATE RESOQURCE ALLOCATION }

k |

FIG. 7

US 9,058,428 B1

1
SOFTWARE TESTING USING SHADOW
REQUESTS

BACKGROUND

Software architects often engage in a process of improving
software after deployment of the software. The improvements
may be implemented by modifying a version of the software
or by creating a new version of the software, where the modi-
fied or new version of the software is intended to replace the
deployed (current) version of the software. Deployment of
the modified or the new version of the software may have an
impact on hardware that supports the version of the software
(e.g., require more or less processing power and/or time), may
impact outcomes resulting from user interaction (e.g., satisfy,
annoy, or frustrate users, etc.), or may have other possible
outcomes (e.g., include bugs, etc.). Therefore, it is desirable
to perform a comparison test, often called A/B testing, to
compare results following execution of the modified or new
version of the software against results following execution of
the deployed (current) version of the software prior to a full
deployment of the modified or new version of the software.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is described with reference to the
accompanying figures. In the figures, the left-most digit(s) of
areference number identifies the figure in which the reference
number first appears. The same reference numbers in differ-
ent figures indicate similar or identical items.

FIG. 1 is a schematic diagram of an illustrative environ-
ment that provides software testing of one or more versions of
software using shadow requests.

FIG. 2 is a schematic diagram of illustrative software that
includes a framework and various versions of software com-
ponents that may be used interchangeably with the frame-
work during software testing.

FIG. 3 is a schematic diagram of an illustrative computing
architecture to provide software testing of one or more ver-
sions of software using shadow requests.

FIG. 4 is a flow diagram of an illustrative process to deter-
mine when to initiate a shadow request while processing a
request using a live version of software.

FIGS. 5A and 5B are flow diagrams of illustrative pro-
cesses to perform the shadow request to test one or more
versions of software.

FIG. 6 is a flow diagram of an illustrative process to adjust
allocation of shadow requests based at least in part on an
analysis of performance and/or a scheduled allocation.

FIG. 7 is a flow diagram of an illustrative process to update
rules governing allocation of shadow requests and update
resource allocations.

DETAILED DESCRIPTION

Overview

This disclosure is directed in part to software testing that
may concurrently process a request using a live version of
software and a shadow request, which is based on the request,
using a shadow version of software (e.g., trial or test version,
etc.). The live version of software, unlike the shadow version,
may update system data and may transmit data back to the
users while the shadow request does not output to the users. In
contrast to typical A/B testing, the testing of the shadow
version occurs without updating system data and thus is used
primarily to test system performance when executing sample
requests (shadow requests) that are based on actual requests

10

15

20

25

30

35

40

45

50

55

60

65

2

(processed with the live version of the software). An alloca-
tion module may vary allocation of the shadow requests to
enable a ramp up of allocations (or possibly a ramp down) of
the shadow version of software. The allocation module may
use allocation rules to initiate the shadow request based on
various factors such as load balancing, user attributes, and/or
other rules or logic. Thus, not all user requests may be issued
as shadow requests.

In accordance with various embodiments, processing of
the shadow requests may allow an analysis of system perfor-
mance resulting from operation of each shadow version ofthe
software. For example, two or more shadow versions may be
tested to determine which version uses less system resources
or based on other factors. System performance may be based
on resource consumption such as server workload, processor
workload, memory allocation storage use, bandwidth,
response time, and so forth. System performance may be
analyzed using business metrics, system level metrics (e.g.,
memory, processor, etc.), and/or application level metrics
(e.g., bugs, errors, etc.). In various embodiments, the analysis
may perform stress testing on the shadow version using real
traffic patterns of users that interact with the live version of the
software.

In some embodiments, a controller may reallocate hard-
ware, such as servers, processing time, or other hardware or
hardware controls to accommodate processing of the shadow
requests using the shadow version of software, particularly
when the allocation rules are adjusted to increase the shadow
requests. The allocation of hardware may or may not be
proportional to the increase of the shadow requests depending
on factors such as an analysis of the system performance
resulting from operation of the shadow version or other fac-
tors.

The techniques and systems described herein may be
implemented in a number of ways. Example implementations
are provided below with reference to the following figures.
Ilustrative Environment

FIG. 1 is a schematic diagram of an illustrative environ-
ment 100 that provides software testing of one or more ver-
sions of software using shadow requests. As shown in FIG. 1,
a downstream consumer or user 102 (referred to collectively
as “user’”’) may transmit a request via a user device for elec-
tronic data from a service 104. However, in some embodi-
ments, the request may be a request generated by another
service, the service 104, or another process, and may not be a
human-generated request. Each of the users 102 may be asso-
ciated with one or more user devices, which may include any
number of components such as the one or more processor(s),
computer-readable media, network interfaces, and/or dis-
plays. The users 102 may utilize the user devices to interact
with the service 104 in any manner. The service 104 may be
an electronic marketplace, an electronic financial service, a
messaging service, a social network, and/or any other service
that exchanges electronic data with a user. The service 104
may operate various versions of software that are executable
in a framework and processed by system resources 106. The
versions may include a live version 108 of software that is
currently deployed to fulfill user requests and a shadow ver-
sion 110 of software that is being tested to measure system
performance.

The service 104 may deploy an allocation module 112 to
allocate shadow requests for some users to the shadow ver-
sion 110 while also processing the users’ requests using the
live version 108. In accordance with embodiments, the
shadow request may be similar to or the same as the request
processed by the live version of the software. However, the
shadow request may include a marker that distinguishes the

US 9,058,428 B1

3

shadow request from an actual request. The allocation may be
made based at least in part on allocation rules 114, in accor-
dance with various embodiments. For example, the user 102
may submit a request to the service 104. The allocation mod-
ule 112 may transmit the request to the live version for ful-
fillment of the request. In some instances, the allocation mod-
ule 112 may also issue a shadow request in addition to
transmitting the request to the live version. The shadow
request may call the shadow version 110, which may also
attempt to satisfy the user’s request. However, unlike the live
version 108, the shadow version 110 does not transmit data
back to the user. Instead, the shadow version 110 is operated
without a user output to test system performance when run-
ning the shadow version of software. In some embodiments,
the live version 108 and the shadow version 110 may be
different versions of software that perform a same or similar
function, but perform the function using different processes,
algorithms, and/or techniques.

The allocation rules 114 may include rules that provide
load balancing, desired scheduling, management of sample
sizes, initiation of shadow requests based on statistical trends,
and/or use other data when determining when to initiate a
shadow request. In accordance with various embodiments, a
controller 116 may manage and update the allocation rules
114.

After the user 102 interacts with a version of the software
(e.g., the live version 108 or the shadow version 110, etc.),
then a metrics analyzer 118 may obtain and analyze resultant
data from the processing of the request by the particular
version of software. The resultant data may include data
related to system performance associated with the user inter-
action and the software version (e.g., load on processors,
response time, bug detection, etc.). The metrics analyzer 118
may determine trends with the resultant data in accordance
with a confident level. In some embodiments, the metrics
analyzer 118 may determine or identify shortcomings in
sample sizes of analyzed results.

In accordance with one or more embodiments, the metrics
analyzer 118 may output results to the controller 116. The
controller 116 may then use the results to update the alloca-
tion rules 114 and/or to perform other functions, such as
allocate or reallocate system resources (hardware). As shown
in FIG. 1, each of the live version 108 and the shadow version
110 is associated with system resources 106. The system
resources 106 may be cloud computing services, server
farm(s), or other types of resources that can be allocated to
execute the various versions of the software. For example, the
controller 116 may allocate a percentage, computational time
value, or other amount ofthe system resources 106 to perform
the shadow requests using the shadow version. As more
shadow requests are allocated by the allocation module 112,
the controller 116 may reallocate more system resources to
the shadow version 110 of the software. Thus, the controller
116 may manage the allocation rules 114 and reallocate the
system resources 106 to accommodate implementation of the
allocation rules 114 by the allocation module 112. The allo-
cation of the system resources 106 may be any type of allo-
cation, such that a single server may be allocated, in part, to
service requests for each of the versions or to service requests
for only a specified version. Thus, one piece of hardware may
perform operations for various versions of software in accor-
dance with some embodiments.

In various embodiments, the metrics analyzer 118 may
output results to a reporting module 120. The reporting mod-
ule 120 may generate reports for each version of the software
related to system performance and possibly other factors. The
data from the reporting module 120 may be used by an admin-

10

15

20

25

30

35

40

45

50

55

60

65

4

istrator or other person, who may then provide input to the
controller 116 to adjust the allocation rules 114. Thus, the
controller 116 may update the allocation rules 114 dynami-
cally based on data received directly from the metrics ana-
lyzer 118 and/or based on user input received from an admin-
istrator or other person, who may have access to reports
generated by the reporting module 120.

FIG. 2 is a schematic diagram of illustrative software 200
that includes a framework 202 and various versions of soft-
ware 204 that may be used interchangeably with the frame-
work during software testing. The framework 202 may be
configured to allow use of the different versions of the soft-
ware 204, such as the live version 108 and the shadow version
110. In some embodiments, multiple shadow versions may be
used, such as first shadow version 110(1), . . . and a last
shadow version 110(»). Any number of shadow versions of
software may be tested during a testing cycle. The framework
may include a call 206, which may direct execution of one of
the versions of software 204 based on the outcome of the
allocation module 112 as discussed above. The allocation
module 112 may determine the software version at any point
in time before the call 206 to the software version. In some
embodiments, the allocation module 112 may determine the
software version prior to a point of execution of the software
version (e.g., as an initial operation rather than just prior to
execution of the software version). The versions of the soft-
ware 204 may be stand-alone software that can be imple-
mented or deployed without modification of the code in a
selected version of the software.

In accordance with various embodiments, each version of
software may include a performance report 208. The perfor-
mance report 208 may be a combined report that list each
version of software together or may be separate reports for
each version of the software. The reporting module 120 may
generate the performance report 208, which may provide data
used to update the allocation rules 114 for the software ver-
sions. For example, when the performance report 208 for the
shadow version 110 indicates intensive use of system
resources, the allocation rules 114 may be modified to reduce
shadow requests.

Tlustrative Computing Architecture

FIG. 3 is a schematic diagram of an illustrative computing
architecture 300 to provide software testing of one or more
versions of software using shadow requests. The computing
architecture 300 may be implemented in a distributed or
non-distributed computing environment.

The computing architecture 300 may include one or more
processors 302 and one or more computer readable media 304
that stores various modules, applications, programs, or other
data. The computer-readable media 304 may include instruc-
tions that, when executed by the one or more processors 302,
cause the processors to perform the operations described
herein for the service 104. Embodiments may be provided as
a computer program product including a non-transitory
machine-readable storage medium having stored thereon
instructions (in compressed or uncompressed form) that may
be used to program a computer (or other electronic device) to
perform processes or methods described herein. The
machine-readable storage medium may include, but is not
limited to, hard drives, floppy diskettes, optical disks, CD-
ROMs, DVDs, read-only memories (ROMs), random access
memories (RAMs), EPROMs, EEPROMs, flash memory,
magnetic or optical cards, solid-state memory devices, or
other types of media/machine-readable medium suitable for
storing electronic instructions. Further, embodiments may
also be provided as a computer program product including a
transitory machine-readable signal (in compressed or uncom-

US 9,058,428 B1

5

pressed form). Examples of machine-readable signals,
whether modulated using a carrier or not, include, but are not
limited to, signals that a computer system or machine hosting
or running a computer program can be configured to access,
including signals downloaded through the Internet or other
networks. For example, distribution of software may be by
Internet download.

In some embodiments, the computer-readable media 304
may store the allocation module 112 and associated compo-
nents, the metrics analyzer 118 and associated components,
the controller 116 and associated components, and the report-
ing module 120 and associated components, which are
described in turn. The components may be stored together or
in a distributed arrangement.

Ilustrative Components of the Allocation Module

In accordance with various embodiments, the allocation
module 112 may include a load balancer 306 and a rules
implementation module 308.

The load balancer 306 may allocate shadow requests based
on availability of the system resources or other factors to
ensure minimal disruption, delay, or latency when allocating
the shadow requests. In some instances, the load balancer 306
may override implementation of an allocation rule in order to
prevent a delay or latency that exceeds a threshold value or
when system performance is not within a threshold range of
values.

The rules implementation module 308 may receive, inter-
pret, and apply the allocation rules 114 that are generated by
the controller 116. For example, the rules implementation
module 308 may access the allocation rules 114 that are
maintained by the controller 116 and updated as discussed
below.
llustrative Components of the Metrics Analyzer

In accordance with various embodiments, the metrics ana-
lyzer 118 may include a sampling manager 310, a statistical
analyzer 312, and a performance analyzer 314.

The sampling manager 310 may obtain data and generate
metrics from the use of the versions of the software. The
sampling manager 310 may receive a predetermined confi-
dence level and then calculate the number of samples neces-
sary to achieve the predetermined confidence level. Gener-
ally, the sampling manager 310 may look at the raw data from
use of the various versions of software and then output
shadow request based on factors such as a confidence level.

The statistical analyzer 312 may determine positive or
negative trends for each version of the software. For example,
the statistical analyzer 312 may determine that a particular
input to a shadow request is indicative or correlated with a
particular outcome (either good or bad). The statistical ana-
lyzer 312 may then indicate or record the trend to enable the
controller 116 to adjust the allocation rules 114 accordingly.
The statistical analyzer 312 may also use confidence levels
when determining the trends.

The performance analyzer 314 may determine or measure
performance trends based on performance of each of the
various versions of the software. The performance analyzer
314 may determine how the system resources are responding
to use of the versions of software, include processing of
spikes in user activity, response time, memory allocation,
throughput, bandwidth, or other system performance mea-
surement attributes. The system performance may be ana-
lyzed using business metrics, system level metrics (e.g.,
memory, processor, etc.), and/or application level metrics
(e.g., bugs, errors, etc.). The performance analyzer 314 may
also determine when one of the shadow versions of the soft-
ware includes a bug or other error.

15

25

30

40

45

55

6

Tlustrative Components of the Controller

In accordance with various embodiments, the controller
116 may include an inputs module 316, a rule updater 318,
and a resource allocator 320.

The inputs module 316 may receive inputs from the metrics
analyzer 118 and/or from an administrator or other person via
the reporting module 120. The inputs module 316 may format
the inputs to facilitate update of the allocation rules 114. The
inputs module 316 may access a schedule that provides a
ramp up or ramp down of the shadow requests.

The rule updater 318 may update the allocation rules 114,
such as by creating new allocation rules or modifying existing
allocation rules. For example, the rule updater 318 may adjust
a percentage of shadow requests or quantity of shadow
requests directed at a particular shadow version when mul-
tiple shadow versions are tested by the service 104. The rule
updater 318 may transmit the updated allocation rules to the
allocation module 112 or make the updated rules available for
use by the allocation module 112. In some embodiments, the
rule updater 318 may modify the allocation rules to decrease
an allocation of the users to a version of software when the
version of software is determined to have an anomaly in a use
of the system resources 106 per user than another version of
the of software based on metrics associated with system per-
formance.

In some embodiments, the rule updater 318 may update the
allocation rules 114 to gradually increase allocations to the
shadow version of software. For example, a testing cycle may
begin with an allocation of 0% and then over time gradually
ramp up the allocation of shadow request to 50% of the
requests received from the users based on using scheduled
guidelines (e.g., increase percent after every x number of
users, y minutes, etc.). When the shadow version continues to
perform well (e.g., no bugs, good system performance, etc.),
then the rule updater 318 may continue update the allocation
rules to implement a gradual ramp up of allocations via
shadow request to the shadow version to 100%.

The resource allocator 320 may allocate or reallocate the
system resources 120 to support execution and performance
of the versions of software. The resource allocator 320 may
use the allocation rules 114 (and any updates thereto) to
determine the resource allocation. The resource allocator 320
may monitor system performance, such as via data from the
performance analyzer 314 to determine allocations or reallo-
cations of the system resources 120.

Tlustrative Components of the Reporting Module

In accordance with various embodiments, the reporting
module 120 may include a performance report generator 322
and an input module 324.

The performance report generator 322 may generate a per-
formance report, which may be based at least in part on an
output of the performance analyzer 314.

The input module 324 may enable an administrator or other
personto update allocation rules or make other changes to any
of the modules discussed herein. For example, the adminis-
trator or other person may view the various reports and then
make changes to the input module 324 that may not otherwise
be automatically updated by the rules updater 318 via the
controller 116 without human intervention. Thus, the input
module 324 may enable a manual override to automated
updates to the allocation rules 114.

Tlustrative Operation

FIGS. 4-7 are flow diagrams of illustrative processes to
provide software testing of one or more versions of software
using shadow requests. The processes are illustrated as a
collection of blocks in a logical flow graph, which represent a
sequence of operations that can be implemented in hardware,

US 9,058,428 B1

7

software, or a combination thereof. In the context of software,
the blocks represent computer-executable instructions stored
on one or more computer-readable storage media that, when
executed by one or more processors, perform the recited
operations. Generally, computer-executable instructions
include routines, programs, objects, components, data struc-
tures, and the like that perform particular functions or imple-
ment particular abstract data types. The order in which the
operations are described is not intended to be construed as a
limitation, and any number of the described blocks can be
combined in any order and/or in parallel to implement the
processes.

The processes are described with reference to the environ-
ment 100 and may be performed by the service 104 using the
allocation module 112, the controller 116, the metrics ana-
lyzer 118, and/or the reporting module 120. Of course, the
processes may be performed in other similar and/or different
environments.

FIG. 4 is a flow diagram of an illustrative process 400 to
determine when to initiate a shadow request while processing
a request using a live version of software.

At 402, the allocation module 112 may determine the allo-
cation rules 114. The allocation module 112 may receive the
allocation rules 114 from the controller 116 or may access the
controller to obtain the rules (e.g., shared copy).

At 404, the allocation module 112 may receive a request
from a user (e.g., the user 102). The request may be for use of
software that includes the live version 108 of the software and
the shadow version 110 of the software.

At 406, the allocation module 112 may determine whether
to allocate a shadow request based at least in part on the
allocation rules 114. When the allocation module 112 deter-
mines not to allocate the shadow request (following the “no”
route), then processing continues at an operation 408.

At 408, the service 104 may process the live request using
the live version 108 of software. At 410, the service 104 may
provide an output to the user in response to processing the live
request. At 412, the metrics analyzer 118 may measure sys-
tem performance of the system resources 106 used by the live
version 110. For example, the performance analyzer 314 may
measure the system performance of the system resources 106
used by the live version 110.

However, when the allocation module 112 determines to
allocate the shadow request (following the “yes” route), then
processing continues at an operation 414 as well as at the
operation 408 (and then the operation 410 and 412). At 414,
the service 104 may process the shadow request using the
shadow version 110 of software. Unlike the processing at the
operation 408, the processing at the operation 414 is not
revealed to the user and/or does not modify data used by the
live version of the software. Thus, any outputs and/or manipu-
lations of data from the shadow version are not seen by the
user and/or used to generate data that is later output to the
user. Instead, the processing by the shadow version 110 is
used to test execution of the shadow version and impacts on
system performance of the system resources 106. The opera-
tions 408 and 414 may be performed by different ones of the
system resources 106 based on an allocation of the system
resources. The operations 408 and 414 may be performed in
parallel, sequentially, or at other times.

Following the completion of the operation 414, the metrics
analyzer 118 may measure system performance of the system
resources 106 used by the shadow version 110 at 416. For
example, the performance analyzer 314 may measure the
system performance of the system resources 106 used by the
shadow version 110. The system performance metrics of the

10

15

20

25

30

35

40

45

50

55

60

65

8

live version and the shadow version may be compared as one
possible analysis of the system performance.

FIGS. 5A and 5B are flow diagrams of illustrative pro-
cesses to perform the shadow request to test one or more
versions of software. In FIG. 5A, a process 500 provides
additional details of some operations that may be imple-
mented when the shadow request is issued to cause execution
of data by the shadow version 110 of software.

At 502, the allocation module 112 may assign the shadow
request to one or more shadow versions of software. For
example, the service 104 may test multiple shadow versions
concurrently to determine the impact of each shadow version
on the system resources 106. However, in some embodi-
ments, only a single shadow version may be tested by the
service 104. In some embodiments, the shadow requests may
be generated for some or all requests received by the service
104. However, additional shadow request may also be gener-
ated in some embodiments, for example to test system per-
formance at levels greater than 100% (e.g., 125%, 200%,
etc.). Testing performance of the system using additional
shadow request may be used to simulate spikes in traffic (e.g.,
black Friday shoppers, holiday shoppers, etc.), or for other
reasons.

At 504, the allocation module 112 may mark a request as a
shadow request using a marker (e.g., a tag, or other type of
identifier). In some embodiments, the marker may include a
header, such as a hypertext transport protocol (HTTP) header
that may designate the request as the shadow request. The
shadow version may then use the marker in association with
processes performed by the shadow version to prevent unde-
sirable actions, such as updating live data, placing an order,
charging a payment, or performing other actions that are not
desired during a test of the shadow version. However, some of
these functions may be simulated by the shadow version to
enable testing of the system performance when implementing
the shadow version.

At 506, the service 104 may execute the shadow version
110. The service may execute the shadow version using the
shadow request that includes the marker and inputs from the
user (or otherwise included in the request).

At 508, the metrics analyzer 118 may measure system
performance of the system resources that execute the shadow
request. For example, the metrics analyzer 118 may deter-
mine metrics such as a response time, processing power,
resources consumed, latency, memory use, storage use, band-
width, and other types of metrics associated with the perfor-
mance of the system resources.

At 510, the reporting module 120 may report the measured
data. The reporting module 120 may use the performance
report generator 322 to generate a report that reflects the
system performance of the system resources 106 that support
the shadow version 110 and/or of the performance of the
system resources 106 that support the live version 108 (e.g.,
for comparison or baseline purposes). In some embodiments,
the reporting may create a report of a comparison of results
between the shadow version and the live version. For
example, the results of each version may be expected to be the
same in some instances. The results of the shadow version
may be compared to the results of the live version to deter-
mine whether the shadow version is operating correctly or
incorrectly (e.g., has bugs, errors, etc.) when the results are
expected to be the same.

FIG. 5B shows a process 512 that includes the operations
described with reference to FIG. 5A with additional opera-
tions 514 and 516.

At 514, the controller 116 may modify allocation rules 114
based at least in part on the measured data from the operation

US 9,058,428 B1

9

508. The modification of the allocation rules 114 may result
in auto-scaling of the shadow request (either up or down), and
thereby resulting in more or less processing of the shadow
version(s). The modification may be performed manually
(i.e., with human input), automatically (i.e., without human
input), or a combination thereof).

At 516, the controller 116 may modify allocation of the
system resources 120. For example, the controller 116 may
modify the allocation of the system resources 106 when the
allocation rules 114 are updated and/or in response to infor-
mation from the performance analyzer 314 performed by the
metrics analyzer 118. In some embodiments, the operation
516 may be performed in the process 500 without performing
the operation 514.

FIG. 6 is a flow diagram of an illustrative process 600 to
adjust allocation of shadow requests based at least in part on
ananalysis of performance and/or a scheduled allocation. The
process 600 may implement a scheduled allocation change to
gradually start to issue the shadow requests with increasing
frequency according to a schedule and subject to various
allocation rules.

At 602, the controller 116 may set the allocation rules to
run the live version and the shadow version at an initial
allocation. For example, the initial allocation may equate to a
low percentage of requests resulting in a shadow request
which is processed by the shadow version 110 of the software.

At 604, the metrics analyzer 118 may compile metrics for
the live version 108 and/or the shadow version 110. Initially,
the compiled metrics may create baseline metrics.

At 606, the metrics analyzer 118 may analyze the results,
such as by performing statistical analysis, performance
analysis, and/or other analysis of the versions and resulting
data.

At 608, the controller 116 determines whether to adjust the
allocation rules 114. The controller 116 may determine to
adjust the allocation rules 114 using a schedule that gradually
increases (or decreases) the allocation of the shadow request
when the shadow version is operating in accordance with
expectations (e.g., same or improved system performance,
etc.). The controller 116 may use the data from the metrics
analyzer 118 in the determination. When the controller 116
determines to increase the shadow request (following the
route “increase” form the decision operation 608), then the
allocation of the shadow requests may be increased up to a
maximum allocation of 100% at an operation 610. When the
controller 116 determines to decrease the allocation of
shadow request (following the route “decrease” from the
decision operation 608), than the allocation of shadow
requests may be decreased down to 0% at the operation 610.
The decrease may be due to a detection of a bug, high or
unusual drain on the system resources, or for other reasons. At
610, the controller 116 may adjust the allocation of shadow
requests, which may be based in part on the schedule that
creates a gradual adjustment in the allocation.

When the controller 116 determines to make no changes
and maintain the current allocation (following the route “no”
from the decision operation 608), then the process 600 may
continue at a decision operation 612. At 612, the service 104
may determine to end a test of the shadow version 110. In
some embodiments, the test may end when the adjusted allo-
cation creates a shadow request for each user, after passage of
a predetermined amount of time, and/or in response to other
factors. When the service 104 determines to end the test
(following the “yes” route), then the test may end at an opera-
tion 614. When the service determine not to end the test (via
the “no” route from the decision operation 612), then the
process 600 may continue at the operation 604.

20

30

40

45

55

10

FIG. 7 is a flow diagram of an illustrative process 700 to
update rules governing allocation of shadow requests and/or
update resource allocations. The process 700 may be imple-
mented by the controller 116 to enable modification or cre-
ation of rules of the allocation rules 114.

At 702, the controller 116 may determine whether inputs
are received from the input module 324 of the reporting
module 120. For example, the inputs may be entered by an
administrator or another person and then transmitted to the
controller 116 or made available for access by the controller
116. When the inputs are available (via the “yes” route), at
704, then the controller 116 may update the allocation rules
114 based at least in part on the input from the input module
324. When the inputs are not available (via the “no” route
from the decision operation 702), then the process 700 may
advance to a decision operation 706.

At 706, the controller 116 may determine whether to
update the allocation rules 114 based on the data from the
analysis module 118. For example, the controller 116 may
update the allocation rules 114 according to a schedule to
update the allocation of the shadow requests based on the
results aggregated by the components of the analysis module
118. When the controller 116 determines to update the allo-
cation rules 114 (via the “yes” route), at 704, then the con-
troller may update the allocation rules based at least in part on
the data from the analysis module 118. When the controller
116 determines not to update the allocation rules 114 (via the
“no” route from the decision operation 706), then the process
700 may advance to a decision operation 708.

At 708, the controller 116 may determine whether to
update an allocation of the system resources 120. The con-
troller 116 may base the determination on the update of the
rules at 704 (when the rules are updated) and/or on data from
the performance analyzer 314 of the metrics analyzer 118.
When the controller 116 determines to update the allocation
of'the system resources (via the “yes” route), at 710, then the
controller may update the allocation of the system resources
120 based at least in part on the data from the analysis module
118. For example, the controller 116 may add more system
resources to support the shadow version 110 of software
when more shadow requests are to be issued following an
update of the allocation rule 114. Following the operation
710, the process 700 may advance to the decision operation
702 to complete a loop process. When the controller 116
determines not to update the allocation of the system
resources 120 (via the “no” route from the decision operation
708), then the process 700 may advance to the decision opera-
tion 702.

CONCLUSION

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described. Rather, the specific features and
acts are disclosed as illustrative forms of implementing the
claims.

What is claimed is:

1. A computer-implemented method comprising:

under control of one or more servers configured with

executable instructions,

receiving a request to process data;

processing the request using a live version of software that,

when executed, modifies system data;

issuing a shadow request based at least in part on dynami-

cally updated allocation rules, the shadow request pro-

US 9,058,428 B1

11

cessed by a shadow version of the software that, when
executed, does not modify the system data used by the
live version of the software, the allocation rules include
a scheduled allocation of the shadow requests that is
contingent on system performance of the shadow ver-
sion, the scheduled allocation comprising a scheduled
guideline that gradually adjusts issuance of shadow
requests over time;

measuring system performance during execution of the

shadow version; and

outputting results based at least in part on the measuring of

the system performance.

2. The method as recited in claim 1, further comprising
allocating system resources to execute the shadow version
based at least in part on the allocation rules.

3. The method as recited in claim 1, further comprising
modifying the dynamic allocation rules based at least in part
on the measurement of the system performance.

4. The method as recited in claim 1, wherein the shadow
version is a modified test version of the live version of the
software.

5. The method as recited in claim 1, wherein shadow
request includes a marker that distinguishes the shadow
request from the request from the user.

6. The method as recited in claim 1, wherein the scheduled
guideline comprises a predefined time period.

7. The method as recited in claim 1, wherein the scheduled
guideline comprises a predefined number ofusers submitting
requests to process data.

8. The method as recited in claim 1, wherein the scheduled
allocation comprises a plurality of percentage allocation steps
having predefined intervals.

9. One or more non-transitory computer-readable media
storing computer-executable instructions that, when executed
on one or more processors, performs acts comprising:

receiving system performance metrics for a shadow ver-

sion of software executed by system resources, the
shadow version being a test version of a live version of
software, the shadow version to test system performance
without modifying system data;

dynamically determining an allocation rule based on at

least the received system performance metrics and a
scheduled allocation of shadow requests, the scheduled
allocation of the shadow requests being based at least on
the system performance metrics of the shadow version
maintaining an acceptable value for at least one of a
predefined time period or a predefined number of users
submitting requests to the live version;

issuing shadow requests using the dynamically determined

allocation rule for a subset of requests to direct process-
ing to the shadow version for the subset of the requests;
and

executing the live version of software for all ofthe requests,

the live version modifying the system data.

10

20

25

30

35

40

45

50

12

10. The one or more non-transitory computer-readable
media as recited in claim 9, further comprising reallocating
system resources based at least in part on the system perfor-
mance metrics.

11. The one or more non-transitory computer-readable
media as recited in claim 9, further comprising updating an
allocation rule based at least in part on the system perfor-
mance metrics.

12. A system comprising:

memory;

one or more processors;

one or more modules maintained in the memory and

executed by the one or more processors to,

receive a plurality of requests to process data;

process the plurality of requests using a live version of
software that, when executed, modifies system data;

issue a shadow request based at least in part on dynami-
cally updated allocation rules, the shadow request
processed by a shadow version of the software that,
when executed, does not modity the system data used
by the live version of the software, the allocation rules
include a scheduled allocation of the shadow requests
that is contingent on system performance of the
shadow version, the scheduled allocation comprising
a scheduled guideline that gradually adjusts issuance
of shadow requests over time;

measure system performance during execution of the
shadow version; and

output results based at least in part on the measuring of
the system performance.

13. The system as recited in claim 12, wherein the one or
more modules allocate system resources to execute the
shadow version based at least in part on the allocation rules.

14. The system as recited in claim 12, wherein one or more
modules modify the dynamic allocation rules based at least in
part on the measurement of the system performance.

15. The system as recited in claim 12, wherein the shadow
version is a modified test version of the live version of the
software.

16. The system as recited in claim 12, wherein shadow
request includes a marker that distinguishes the shadow
request from the plurality of requests from the user.

17. The system as recited in claim 12, wherein the sched-
uled guideline comprises a predefined time period.

18. The system as recited in claim 12, wherein the sched-
uled guideline comprises a predefined number of users sub-
mitting requests to process data.

19. The system as recited in claim 12, wherein the sched-
uled allocation comprises a plurality of percentage allocation
steps having predefined intervals.

20. The system as recited in claim 12, wherein the one or
more modules measure system performance metrics caused
by the shadow version of the software and increase an initial
percentage of the plurality of requests used to create shadow
requests when the measured system performance metrics
indicate acceptable performance.

#* #* #* #* #*

